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A simple and efficient solution strategy is designed for fluid flows governed by
the compressible Euler equations. It is constructed from a stable high-order central
finite difference scheme on structured composite adaptive grids. This basic frame-
work is suitable for solving smooth flows on complicated domains and is easily
extendible with extra tools to handle specific flow problems. The stable high-order
central difference scheme is mathematically formulated using a recently derived
semi-discrete energy method for initial-boundary value problems. The high order
of accuracy reduces the number of grid points required in smooth parts of the flow
which leads to efficiency in both computational time and memory. A local grid adap-
tation technique is used to increase the grid density where required. Extra tools are
developed for the sharp resolution of shocks. The grids are refined in the shock
regions to retain accuracy. On the fine grids in these regions, an effective scalar
artificial viscosity term is added to suppress spurious oscillations generated by the
high-order central difference method. The location and orientation of shocks is de-
termined by an easy-to-implement wavelet-based detection algorithm. The overhead
of the composite adaptive grid method and detection algorithm is negligible com-
pared to the computational kernel. The local grid adaptation with the high-order
scheme is shown to increase computational efficiency. The resolution of shocks is
sharp. (© 1998 Academic Press
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1. INTRODUCTION

This paper discusses the ideas and tools that underlie a new general solution stratec
solving fluid flows governed by the compressible Euler equations. The emphasis in the
sign is on simplicity and efficiency. The basic method consists of a stable high-order cer
difference scheme implemented on structured composite adaptive grids. This combine
is effective for solving smooth flows on complicated domains. Simple effective tools &
built on top of this basic framework to handle more complicated problems. In this work, \
developed a fast accurate wavelet-based detection algorithm and a cheap artificial visc
term to show that we can effectively deal with shock waves, despite the notorious genere
of spurious oscillations by central high-order schemes. This approach in designing a s
tion strategy differs from the current trend in academics to develop sophisticated sche
for specific flow situations as, for example, the essentially nonoscillatory (ENO) [35, 1
and total variation diminishing (TVD) [42, 11] schemes.

This paper builds on results presented in [16] in which the stable high-order cent
difference scheme, referred to as the SHOEC scheme, the artificial viscosity and the sl
detection algorithm were introduced in one dimension. Here, we extend the method
tools to two dimensions and implement them on composite adaptive grids. The compa
grid method, detection algorithm, and local grid adaptation approach are independer
the underlying numerical scheme and are therefore of general interest to the computati
fluid dynamics community.

The scope of the solution strategy is not limited to the flow problems discussed in t
paper. For example, we are investigating its use for the simulation of tidal flows. Turbule!
models can be added to the scheme without affecting its basic properties. However,
method is not designed to deal with intricate shock interactions, moving boundaries
very complex domains. Also the current framework is not designed to compute strc
shock problems. It was our intention to develop a basic framework for smooth flows tl
can be easily and cheaply extended to deal with weak to moderate shocks as may occ
transonic flows.

1.1. Structured composite grid method&implicity and efficiency were the two main
criteria in choosing our numerical method. We kept future implementation on parallel
chitectures in mind. In general, structured grid codes have simple and transparent
structures, are straightforward to implement and lend themselves well for parallelizat
with languages such as high performance Fortran or auto-parallelizing compilers. The n
commonly used structured grids are boundary-conforming curvilinear grids, in which 1
physical domain is mapped onto a square computational domain. However, for some c
plex geometries this mapping might not exist, or it might lead to low quality grids that cres
unacceptable errors in the numerical scheme. Unstructured grids, on the other hand, ¢
easily adapted to geometrical complexities. To overcome the limitations of structured g
several researchers started the development of methods based on nonboundary-confo
Cartesian grids; see a.o. [1, 4]. Such grids can handle complex configurations without
labor intensive case-by-case analysis that is normally required with body-fitted grids. |
special treatment is required for the grid cells that are cut by the boundaries and it is diffi
to maintain accuracy. In unstructured grids the grid points cannot be identified with co
dinate lines. In two dimensions a grid is typically formed by triangular and quadrilatel
cells, and in three dimensions tetrahedra, prisms, and pyramids are often used. The
are body-fitted and very flexible. But unstructured grids require explicit bookkeeping of t
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grid connectivity which causes a larger memory overhead. Parallelization of these cod
harder and requires explicit message-passing to perform communication between pr
sors. Much effort is being put into the development of parallel tools at present to try to c:
up with the structured grid world [8]. Several strategies have been developed to combin
simplicity of the structured grids with the flexibility of the unstructured grids. Composite g
methods divide the flow domain into subregions each of which can accommodate a sn
curvilinear body-fitted structured grid. The underlying logical structure of composite gr
allows the use of standard structured grid methods with little modification. The individ
component grids can be patched or overlapping. In patched grids the different compc
grids share a common interface. Care must be taken so that overly skewed grid cells a
generated at the interfaces. Discontinuous or nonsmooth grid lines complicate the sol
methods. In overlapping grids, communication of the solution between the component (
is done through interpolation, in our implementation this is a fourth-order Lagrangian
terpolation, which offers greater geometric flexibility with smaller mesh generation tim
Recent developments and grid generation packages are discussad-Bp&ider in [30],
Zhu in [44], and Gerritsen in [15]. We chose finite differences on overlapping compo:
grids for their simplicity, efficiency, and suitability for parallelization. The composite gri
offer sufficient flexibility for the applications of interest.

1.2. The SHOEC schemeédeally, a numerical method satisfies suitable stability ar
entropy (in)equalities and is locally well behaved. The construction of such schemes is
and often limited to scalar equations in one dimension. Many schemes have been proj
with different properties based on different concepts. For example, the class of cons
tive methods was formulated to guarantee that the numerical solutions obtained are
solutions so that the computed shock speeds are correct. Conservation is a sufficier
not necessary, condition formulated for initial value problems (IVPs). As another exan
we mention the concept of total variation (TV) stability discussed in [20] which led to t
construction of second-order conservative schemes that are stable for a wide class o
dimensional scalar nonlinear IVPs. The MUSCL scheme developed by van Leer [42],
the PPM method proposed by Colella and Woodward [11] are based on this TV stability
are referred to as total variation diminishing (TVD) schemes or slope-limiter schemes.
TVD condition prevents spurious oscillations at shocks, but does not ensure that an en
condition is satisfied. The essentially nonoscillatory (ENO) schemes designed by Ha
Osher, Engquist, and Chakravarthy [35, 17] were inspired by the slope-limiter technic
employed in the construction of TVD methods. They prevent the generation of spuri
oscillations and are third or higher order accurate away from shocks and smooth extr
They are not necessarily TV stable, nor can they in general be shown to satisfy an en
condition, but they resolve shocks very sharply. The underlying theory is based on st
one-dimensional IVPs. Recent developments are the complex fifth-order ENO sche
designed by Lindstrh [21] and the weighted ENO (WENO) schemes constructed by S
[18]. All these schemes have desirable qualities but do not fit our criteria of simplic
and efficiency. Central difference schemes, on the other hand, do. Until recently, it
not known how to derive stability estimates for high-order central difference schemes.
advances by Kreiss, Scherer, Strand, and Olsson [19, 41, 26] led to the construction of
order boundary difference operators that enabled the design of stable high-order sch
for linear systems. Olsson [25] extended these ideas to include nonlinear conservation
His results were built upon in [16] to design the stable high-order central difference sch
for the Euler equations. The derivation is based on symmetrization of the equations thr
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entropy variables and a suitable splitting of the flux derivative vector. We refer to it as 1
split high-order entropy-correct (SHOEC) scheme. The SHOEC scheme satisfies an en
estimate. Entropy inequalities can be obtained if artificial viscosity is added near shoc
This is also desirable to suppress spurious oscillations generated by the high-order ce
scheme. We constructed a cheap scalar artificial viscosity term in [16] that led to sharply
solved shocks and retained the stability properties of the SHOEC scheme. Here, we exte
to two dimensions. We remark that it is not necessary to add artificial viscosity outside sh
regions to stabilize the numerical method because of the inherent stability of the SHC
scheme.

1.3. Local grid adaptation. In large scale problems it is far more memory and time
efficient to concentrate grid points in regions where more accuracy is required while keey
the grid density low in regions where the flow is smooth. Often, the locations of these regi
are not known a priori and they can change position in the flow domain. Thus, we use
namic grid adaptation. Of course, a high grid density is needed in regions where numel
errors exceed a predefined tolerance. For linear problems, error estimation follows e
from stability estimates. For nonlinear equations, the numerical errors can be approxim
after linearization if the flow is sufficiently smooth [44]. Recentlp@jéen [38] showed that
all numerical schemes for systems will degrade to first-order accuracy at shocks, so acct
can only be retained by refining the grid in the shock region. Error estimation techniq
break down at discontinuities and therefore shock detection algorithms are needed to fin
location of the shocks. In [16] a fast and accurate detection algorithm was developed b:
on a wavelet-analysis of the pressure grid function in one dimension. In two dimension:
also gives information about the orientation of the shocks as is discussed in this pape
the shock is sufficiently aligned with the grid, this information can be used to refine the g
only in the direction normal to the shock in which the flow variables change most rapid
In the future, this information could be used to construct an aligned composite grid in 1
shock region to enhance the solution quality. Smearing of the shock on the coarse ¢
can further be avoided by adding artificial viscosity only on the finer grids surrounding t
shock that were introduced to retain accuracy.

In summary, the solution strategy that we describe has the following building blocks:

e Split high-order entropy-correct finite difference scheme (Section 3)

e Overlapping composite adaptive grids for complicated domains (Section 4)
o Atrtificial viscosity to suppress spurious oscillations (Section 5)

e A detection algorithm to locate phenomena for grid refinement (Section 6).

We validate the components with an Euler test suite in Section 7. Conclusions and fu
directions are discussed in Section 8.

2. THE COMPRESSIBLE EULER EQUATIONS

The solution strategy and tools are tested on two-dimensional flow problems gover
by the compressible Euler equations. We write them as a system of conservation laws

U+ fx+0,=0 u f,geR’, (Xx,y)eQCR? t>0,
2.1)
ux,y,t =0 =o¢(x,y).
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The state vectan and flux vectorsf andg are given by

0 pu pv
u= Pu , f= ,0U2 +p s = pUv

pv puv ,ov2 +p

E u(E+p v(E+ p)

The variablew, u, v, E, and p are the density, velocity in the-direction, the velocity in
they-direction, the energy, and the pressure of the gas, respectively. The pressure is re
to the velocities through the equation of state for a polytropic gas,

1
p=(y—1)(E—§p(u2+v2)), (2.2)

wherey = 1.4 is the ratio of specific heats,/c,. At flow boundaries of the domain we
prescribe data for the in-going characteristic variableby

w (982, 1) = Y (D).

At solid boundaries we require the velocity normal to the boundary to vanish. The f
vector f (u) is a homogeneous function of order onefggu) = 6 f (u). The Jacobiarf, is
nonsymmetric.

The entropySis given by

S=c,log(ppo™") + const

In the remainder of this paper we will use a simplified scaled expression for the entrog
the form

S=log(po™"). (2.3)

3. THE NUMERICAL SCHEME

We argued that a desirable numerical method has three main attributes: simplicity,
order of accuracy, and stability. Simplicity leads to efficiency. A high order of accure
leads to savings in memory usage and computational time in smooth parts of the flow, ¢
leading to efficiency. Stability ensures the numerical method is well-behaved and img
knowledge about the numerical errors that can be used in a grid-adaptive approach. Ir
we showed how to apply the results presented in [19, 41, 26, 25] to design a suitable |
order central numerical scheme for the Euler equations of gas dynamics in one dimen
If the flow is nonsmooth we add artificial viscosity in a neighborhood of the shock(s) wh
we show results in an entropy inequality. Here, we present the correct two-dimensi
form of the SHOEC scheme. The complete derivation of the stability results for the (fu
nonlinear) semi-discrete Euler equations in two space dimensions and general coordi
are given in [15]. The resulting semi-discrete equations are given in Eq. (3.4).

Studying this equation the reader may be disconcerted that what we are proposin
scheme in nonconservative form. However, the scheme does satisfy a stability estimat
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an entropy inequality in the presence of shocks. We realise that this is not a solid mathe
ical proof that the scheme yields a unique, physically correct solution (except in the cas
scalar, convex conservation laws as shown by DiPerna[14]), butitis a desirable property
would also like to mention that Iollo and Salas [34] recently showed how to obtain the corr
Rankine—Hugoniot conditions from a primitive form of the Euler equations. We are curren
investigating if a similar approach can be used to derive the Rankine-Hugoniot equati
from the proposed SHOEC form. In [16] the shock speed computed by the SHOEC sch
in one-dimensional test problems was found to be correct. In practise, the scheme is in
mented on composite adaptive grids. When shocks are present, we refine the grid anc
artificial viscosity on the fine grid enclosing the shock. Thus, we solve a parabolic probl
on the finest level which yields sharp resolution of shocks on the coarsest level. We bel
that the proposed approach warrants further investigation in the transonic flow regions
this paper we show that the scheme can handle weak shocks well. But, problems tha
dominated by strong shocks probably warrant a different approach from the one we prop

We remark that the stability proofs are valid for single uniform grids. Stability proof
for numerical methods on multi-dimensional composite grids are not available, but sev
authors have succeeded in deriving results in one space dimension; see, amongst o
[40, 39, 5].

3.1. The appropriate form in two dimension#s in the one-dimensional case, we sym-
metrize the Euler equations by transformation to the so-called entropy variatlgsand
apply a splitting to the fluxes to obtain

U = (( fNww)x + (wa)y + wawX + gwwy)' (31)

B+1
As discussed in [16] the parametgiis given by = (« + y)/(1 — y), wherea > 0 or
a < —y. The entropy variables(u), the fluxesf andg, and the Jacobian§, and§, are
given in Appendix A. We assume that the mapping between physical coordixatgs
and the computational coordinatgss) € (0, 1) x (0, 1) is one-to-one and that both the
mapping and its inverse are continuously differentiable. The physical and computatic
coordinates satisfy the relations

X =Js, Ve = —Js, J =det[xr Xs:| .

Xs = —Jry, Ys=Jry, Yoo Ys

These equations imply that

9 3
g(J(rx +ry) + %(J(Sx +5sy)) =0. (3.2)

The Jacobian of the transformation and its determirdaate, of course, independent of
time. We further assume thal| > 0 always. In terms of the computational coordinates
Eq. (3.1) equals

1 ~ ~ - ~
U = =g Oy S yw)s 1@ +5,@, w0

1 o o . -
_m(rxfwwr + st ws + 1y, wr + 5,8, ws). (3.3)
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We use Eq. (3.2) and the homogeneity relations to rewrite Eq. (3.3) as

(Juy = —%((erf# InGr + Iscf + IsG)s)
- m(er fowe + Iryg,wr + Is f,ws + 35,8, ws),
and we discretize it as
Uy = —ﬁ{orurxf# Iry@) + Ds(Isf + Js,8)}
- ﬁ—il{(rx f, +r1y8,)Drw+ (s f, +5,8,)DsW}. (3.4)

Both D, andDg are assumed to satisfy the equality
(U, DV)p = Ulvh — uvo — (DU, V)p, (3.5)

in respectively the ands-directions. This is the summation-by-parts principle that we
shown in [16] to be an essential ingredient in deriving the stability results. The sc:
products used in [15, 27] to prove stability are defined as

{u, Vi = (U, IV)h = (Ju, V)p, (3.6)

where

n
(U, V)p = ArAs Z oiojujvj = hu'xv.
i.j=0

The termu;; represents the solution in the grid poijt= (i Ar, jAs). In (3.6) each pointis
scaled with the cell volume. This scalar product is a natural choice as the analytic scalar |
uctisequaltqu, v) = [, uTvdQ= Jonxon u’(x(r, s), y(r, 8))v(x(r, s), y(r, s))J dr ds.
As shown in [15] the semi-discrete equations (3.4) allow the derivation of a multidim
sional nonlinear semi-discrete energy estimate. In the experiments performed in this |
we used discretization operators with an overall accuracy four. Itis sixth order in the inte
and third order at the boundary. Its coefficients are given in [16].

The equations (3.4) are solved in time by the third-order total variation diminishi
Runge—Kutta scheme formulated in [36]. Although our spatial accuracy is generally fou
order, we elected this scheme for its simplicity and stability properties. For a systen
ODEsu; = L (u(w)), as in (3.4), the scheme computes the solutibit at the(n+ 1)th
time step according to

Gy = u" + AtL (UM,
Uy = 3/4u" + 1/40; + 1/4AtL(Ty), (3.7)
u™t = 1/3u" 4 2/3i, + 2/3AtL({y),
with time-stepAt and intermediate variablég andis.
The boundary projection is applied at the end of the complete Runge—Kutta cycle to

serve the accuracy of the RK method in accordance with the recommendation by Carpe
Gottlieb, Abarbanel, and Don [9].
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4. OVERLAPPING COMPOSITE ADAPTIVE GRIDS

The composite adaptive grid (CAG) method that we use is based on the CAG metl
proposed by Zhu in [44]. The composite grid is constructed with the extendible compo:
overlapping grid-generator XCOG developed by Petersson [31]. XCOG is a basic :
efficient two-dimensional grid generator. The code is well structured so that the additior
modules developed by the user and coupling of XCOG to flow solvers is straightforwa
A three-dimensional version is developed under the name CHALMESH [32] at Chalme
Center for Marine Research and Technology, Sweden.

4.1. Overlapping composite gridsA composite grid is constructed from two or more
component grids that are either Cartesian or curvilinear. We start with the construct
of (small) body-fitted grids surrounding curved boundaries and then cover as muck
possible of the remainder of the flow domain with a Cartesian grid to minimize the costs
the grid generation and the numerical computations. A simple example is shown in Fig
The subdivision of the flow domain into several different component grids can be usec
other advantages. It leads to natural domain decomposition methods for parallelization
example. Also, different equations can be modeled on different grids. An example of
latter is the use of full Navier—Stokes on boundary grids and Euler on interior grids in hi
Reynolds number flows [30].

The grid points in each component grid can be assigned to one of two cladeesr
points andoverlap points. In Fig. 1 the overlap points are indicated by squares in tt
Cartesian gridG; and circles in the curvilinear griG,. We remark that this example
corresponds to a central discretization stencil of width three and that wider stencils \
require more overlap points. The two grid-point classes differ in the way their soluti
values are updated. The values inthe interior points are determined by the difference mei
Because the interior points of the component grids cover the complete flow domain (v
a small overlay) a new solution is computed everywhere after the time step is comple
The values in the overlap points are computed by interpolation of the new solution vall
in a set of interior points of the overlapped grid (or donor grid). Recently much effort h
been put in the design of interpolation schemes that are conservative (see, e.g., Berge
and Rirt and Spgreen [29]). It does not pay to use these expensive schemes in the SHC
scheme because the SHOEC scheme itself is in nonconservative form. Instead we

T

5

B2
o
]

’,,.
0, [Tl
LE'

FIG. 1. Composite grids around a cylinder for a difference stencil with a width of three.
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Lagrangian interpolation of an order consistent with the order of the overall scheme.
far we have not allowed shocks to travel through the overlap regions. We expect tha
artificial viscosity added to our scheme around shocks (Section 5) will suppress oscillat
that may be introduced by the high-order interpolation at the overlap boundaries and
automatic grid refinement in the shock regions will keep the resolution sharp.

So far, the effect of the overlap on stability has not been studied extensively. The r
classical and perhaps most general resultis by Starius in [40, 39]. He investigated hypet
equations in one dimension using the Lax—Wendroff method. His results indicated tha
stability depends on the physical width of the overlap and that, in general, this wi
should be independent of the mesh size. Accordingly, we keep the width of the ove
constant when refining which means that the number of overlap points grows as the
size decreases.

4.2. Local grid adaptation. The purpose of grid adaptation is to restrict high grid densi
to regions in which an increased numerical accuracy is heeded, thus allowing coarse
elsewhere. We use two complementary tools to detect these regions during simulatior

1. Numerical error estimation based on the stability estimafes.linear (systems of)
equations error estimates follow immediately from the stability estimates of the se
discrete solution on one grid. Typically, let, be the numerical solution to the linear
problem

u = Lu, onQ x [0, T],
u(x, 0) = up(x),
u=g(), ono.

If v, satisfies a stability estimate of the form

lon(M113, < Ke*T(uonlld, + 19150, x0.17)-

then the erroe, = uy, — vy, Whereu,, is the projection of the analytic solutianon the
discrete domaii2,, will satisfy an estimate of the form

len(M113, < KT (711, x0.17 + IITboundanyl 50, x[o.71) -

Here,t is the truncation error. For nonlinear equations we can derive an error estimate
linearization. Zhu demonstrated the validity of this approach with numerical tests on
shallow water equations [44]. The error estimates can be generalized for composite gri
shown in the same work for low-order methods. We are currently investigating its exten:
to high-order methods.

2. Shock detection based on a wavelet analysis of the pressure grid funEtian.
estimation alone does not suffice. Recentlpgdgen showed that the accuracy at a shoc
cannot exceed first-order on uniform grids, independent of the numerical scheme
The low accuracy will gradually pollute the solution away from the shock as the solut
is stepped forward in time. To retain accuracy, the grid has to be refined in the st
regions. We remark that formal accuracy may also be preserved using shock fitting
subcell resolution. Because numerical error estimation is based on an approximation
truncation error and presumes that the solution is smooth, the analysis will break dov
discontinuities. A separate detection algorithm is needed to locate shocks. We propo
wavelet-based detection algorithmin [16] which is extended to two dimensions in Sectic
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Grid refinement is achieved by the injection of extra grid points in the flagged regior
thus creating an overlaying fine grid. If the percentage of flagged points in a grid exceet
certain fraction, the complete grid is refined. The ratlzetween coarse and fine grid size
is kept constant and equal to 4 which has been found to work well for hyperbolic equati
[2]. The solution is stepped forward in time on the complete coarse grid. Then, solutions
the overlaying fine grids are computed for the same time, requirtiges as many time
steps if the time step is controlled by a CFL condition. The boundary conditions for t
boundaries of the fine grid that are located in the interior of the coarse grids are determ
by interpolation in space and, if needed, in time of coarse grid values. At the end of
cycle the coarse grid solutions are updated from the fine grid solutions by injection. T
refinement process is repeated recursively so that a series of increasingly finer grids
be created.

The size of the refined areas is kept to a minimum if the regridding is done at each s
but this is prohibited by the regridding costs. Therefore, we creatdfar zoneof a few
grid points wide around the flagged points and include it in the regridding. The addition
the buffer zone will keep moving features inside fine grids longer and takes care of poss
error growth directly outside a flagged region before the next regridding takes place
moving shocks or interfaces are detected, we approximate their speed and increas
buffer zone in the direction of propagation. We remark that if overlap points are flagg
during the above process, their donor points are flagged as well to ensure sufficient acct
in the interpolation.

A (oversimplified) graphical illustration of the grid adaptation process is given in Fig.
Here, we show a likely flagging of grid points in the simulation of transonic flows past
cylinder. Two shocks are formed on the lee side of the cylinder that are detected by

i f"fg Fﬂ’romfsr . add bufferzone flag donor points
fear shock and rear stagnafion corresponding to flagged overlap points

final cylindrical grid final cartesian grid

FIG. 2. Possible flagging round a cylinder when modeling transonic flow.
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shock detection algorithm. Points in the wake of the cylinder may be flagged by the €
estimation method. A buffer zone is included and donor points are flagged if necessar
shown, the resulting set of fine grid points is not usually contiguous, but gaps and h
and ragged fine grid boundaries may be present. We refer to such grids as stair-step
for obvious reasons. In most composite adaptive grid methods the fine grid is decomp
into a set of rectangles. This simplifies the required data structures. But it is hard to fin
efficient way to cover the flagged regions with rectangular patches. Instead, we use ong
structure for each complete fine stair step grid that accommodates the grid irregularities
required data structures are more complicated, but they can be created easily in C, C-
Fortran 90. Stair-step grids are natural in composite grid methods as the coarse comp
grids have stair-step overlap boundaries. It is therefore easy to deal with refinements i
overlap regions. Stair-step grids were used by Blom, Trompert, and Verwer in their For
77 VLUGR codes [7, 6]. However, Fortran 77 does not lend itself well to the required o
structures.

5. ARTIFICIAL VISCOSITY

Artificial viscosity is needed at shocks to suppress spurious oscillations generated b
central high-order difference scheme. Ideally, artificial viscosity terms should be constru
such that the stability estimates are not destroyed, shocks are resolved sharply, ar
artificial viscosity terms can be computed cheaply. In [16] we designed a cheap but effe
artificial viscosity term in one dimension that satisfies these criteria. The artificial visco:
is introduced on a (sequence of) refined grid(s) around the shock, but not on the coarse
Itis of the form

hQw = hD,eu, D_w, (5.1)
where
1 1
(Diw)j = H(UH—l —uj), (D_wj = H(Uj —Uj_1),

and

Imin|Ail, s=0,
€= (5.2)
Ir2—sl, s#0.

Here,s is the shock speed and =u —c, A, =u, andiz=u+c are the characteristic
speeds of the flow. They are evaluated at the Roe-averagediistdetermined by the
upstream shock statg and the averagem, = (u; + u,)/2 of u; and the downstream shock
stateu,. The shock speesifor ak-shock is computed wite~ (Ax(u;) + Ak(uy))/2. The
Jacobiaru,, is given in Appendix A. The term (5.1) is a consistent discretization of tt
diffusion term(Euy)x = (E U, wy)x, Scaled by the grid size, which preserves the stability
estimates iE = 0 atthe boundary [16]. The addition of this artificial viscosity term natural
reduces the SHOEC scheme to first-order. This is acceptable becagseesj[38] found
that any scheme for systems of conservation laws reduces to first-order accuracy at st
High-order of accuracy of a scheme can only be retained if the grid is refined in the st
region as we do. Because we only use artificial viscosity on the locally refined grids exce:
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smearing does not occur at the coarse grid scale and thus the smallness of the arti
viscosity is not that crucial. In fact, we can use as large an artificial viscosity as we we
as long as we keep the refined grids on which it is applied sufficiently fine.

5.1. The artificial viscosity term in two dimensiondn two dimensions we include an
artificial viscosity term analogous to (5.1) for each computational coordinate direction
which it is needed. That is,

|Jlue = L) + [I[(Qrw + Qsw), (5.3)
whereL (u) is given by the right-hand side of (3.4), and
Qw=hD,Eu,D" w

with a similar expression for theedirection. Herdh = Ar Asis the cell area. The viscosity is
scalar, i.e.F = &1 . We remark that the viscositiesa defined in (5.4) through (5.6) contain
an extraAr - or As-term in the denominator. If the grid is sufficiently aligned with a shock
artificial viscosity is only needed in the coordinate direction normal to the shock. Withc
proper alignment we resort to adding viscosity in both directions. Care must be taker
properly extend the scalar artificial viscosity (5.2). In contrast to the one-dimensional ce
there are an infinite number of characteristic propagation directions, given by wave vec
k. The corresponding eigenvalugs are given by

)m={15'17,1,.;-17,1;«17—071;@'174‘07},

wherev is the velocity vector and,, is the unit vector in the direction @f. Since we are
interested in information propagating in the direction of the computational coordinate
ands, logical choices are& = Vr =[dr/dx, ar /dy]" andk = Vs=[3s/dx, 3s/dy]". We
propose the use of

[ za minilAveil, s=0,
€= (5.4)
srlivrz—sl, s#0,
if the shock is aligned with the-direction, and
) 72 Mini [Avsil, s=0,
€ = (5.5)

1
saslhivs2—sl, s#0,

if the shock is aligned with the-direction. If the shock is not aligned with the grid we take
the average

1 : 1 .
Zar MiNi[Avril + 735 Mini[Avsil, s=0,

M
Il

(5.6)
i |hvro — S|+ zaclAvso-sl,  S#O.
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6. DETECTING PHENOMENA WITH WAVELETS

In the previous sections we motivated the need for an accurate and efficient dete
algorithm to locate sharp interfaces and shocks. To retain the accuracy of the nume
scheme we need to refine the grid locally around shocks. Accurate detection of the s
location will minimize the refinement costs. We are interested in the position of shock
interfaces as well as their orientation. If the grid is sufficiently aligned with a shock, refil
ment in the direction normal to the shock will suffice. Also, addition of artificial viscosi
can be restricted to this computational direction. In future applications the information at
the orientation of the shock may be used to reconstruct the grid in the shock region. In
we presented an efficient and accurate detection algorithm in one dimension based
multiscale wavelet analysis of a grid function, i.e. the pressure grid function. The algori
returns accurate information about the shock location and can also easily detect spL
oscillations. In this section we show how the one-dimensional wavelet detection cal
extended to two dimensions.

In the last few years a number of researchers have investigated the use of wavels
computational fluid dynamics (see, e.g.[33, 43]). In the majority of the proposed method:
partial differential equations are solved in wavelet space; the grid functions are expat
in terms of a wavelet basis and appropriate operators, e.g. differentiation operators
constructed in the wavelet space, generally in the form of Galerkin or collocation meth
Data compression in wavelet space, achieved by discarding all wavelet coefficients be
certain threshold value, corresponds to grid adaptation in physical space. The wavelet-|
schemes produce high grid density in regions where the flow variables change rapidly
low density elsewhere, because slow variations correspond to small wavelet coeffici
Complex geometries, arbitary meshes, nonlinearities, and nonperiodic boundary condi
are, however, difficult, if not as yet impossible, to handle. In recent work, Walden [
used filterbanks instead of the standard orthonormal wavelets in combination with fi
difference methods. His filterbank method is computationally more efficient and simpli
the treatment of nonlinearities and general boundary conditions. However, restriction
the computational domain remain.

Our approach is different; we use wavelet analysis only at the postprocessing stage
making it fully independent of the numerical method used and avoiding any problems a
ciated with irregular computational domains, such as stair-step grids, boundary condit
or nonlinearities. We are also primarily interested in detecting discontinuities and Ic
oscillations. If a more accurate error estimation is required we can use the error estim
technique explained in Section 4.2. With this approach we are able to use well-establi
and efficient wavelet detection algorithms developed for edge and noise detection in s
analysis as a basis for our detection algorithm. The wavelets used are nonorthonormal
wavelets with symmetric, compact support designed by Mallat [22—24]. The shock de
tion ability of these wavelets in finite discrete domains is shown to exceed the detec
ability of popular Daubechies wavelets [12].

In the remainder of this section we very succinctly present the one-dimensional the
first and then show how the wavelet algorithm is extended to two dimensions. Deta
discussion can be found in [15, 16].

In one dimension a functiof is convolved with dilations and translatiorig(x — b) /a)
of a mother wavele (x). The parameteb is referred to as theenterof the wavelety,
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anda represents itscale The wavelet coefficients

1 -b
(f, Yap) = 5/ f(X)1/f<XT> dx

give information on the frequency content bfx) in the neighborhood ot =b. We dis-
cretizea asa;, = 2™, me Z, wherem represents the level. The grid skzés normalized to

1 (corresponding to leveh = 0). At each levem the wavelet coefficients are computed at
all grid pointsx; =i. The mother waveley (x) used is a quadratic anti-symmetric spline
with compact supportf1, 1] given by

2(x + 1), —1<x<-1/2,

—4x(14+x) —2x2, —1/2<x <0,
Y = ,

—4x(1 — X) + 2x°, 0<x<1/2

—2(x — 1)?, 1/2 <x < 1.

As discussed in [16] it is the derivative of a compact smoothing funét{@m. In this same
reference it is shown that each wavelet coefficigity, ) is equal to the first derivative
of the function f (x) smoothed at the scakeby the functiond, , =a=16((x — b)/a). At
a shock, the first derivative will have a local maximum. The one-dimensional detect
algorithm, therefore, first collects the local modulus maxima of the wavelet coefficients
all scales. Furthermore, modulus maxima that correspond to shocks do not vary from
scale to the next. This is used to pick out the desired wavelet coefficients and, thus,
shock locations.

In two dimensions we use two wavelets (x, y) andy2(x, y) given by

1 0%, y)
w (Xa y) - ax )
2 (k. y)
W (X’ y) - ay ’

whered (x, y) =6(x)0(y).
The wavelet transform of a functiofi(x, y) has two components

1 _ 1,1(X—b y—c
(1vde) = (ratui (B2 X2E)),

2 _ _1,2(X—b y-c
<f’wa’b’°>=<f’a w( a  a )>

Again, a represents the scale abhéndc are centers of the wavelet in, respectively, xhe
andy-directions. As in the one-dimensional case, we discretiasa=2" and compute
wavelet coefficients at all grid poinig ; = (i, j).

If, as in (6.1), we use the same scale both x- andy-directions in two dimensions, it
can be shown that

(6.1)

=

% ( f, Qa,b,c) ‘|
&(fv 9a,b,c>

= —aVv( f, 9a,b,c)~
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Consequently, the components of the two-dimensional wavelet transfapm=ai, y = c)
are proportional to the components of the gradient vectéi(®f y) smoothed at the scade
The direction of the gradient vector indicates the direction in wHick, y) has the largest
variation. Shocks can therefore be found perpendicular to gradients that are local mo
maxima. So again we search for local modulus maxima first. The moddys: of the
gradient vector is defined as

Ma,b,c = \/|< f, w;b,c>‘2 + ’< f. w:’ib,c>‘2'

We investigate the behaviour of the modulus maxima across scales as in the one-dimen
case. Finally, to recover shock curves we chain adjacent local maxima if their respe
position is perpendicular to the gradient direction.

In [16] we showed that the wavelet coefficients in one dimension can be compt
efficiently using two discrete and finite filte&andH. In two dimensions this fast wavelet
transformation (FWT) is also possible. We can express the two-dimensional FWT in te
of the one-dimensional filter operations as

Fm = Pm—1% (Hm-1, Hn-1),

1
WY = —Py1 % (Gm_1, D),
Am
, 1
W5 = —Pmn1% (D, Gm-1).
Am

Here,Py_1* (Gm-1, D) denotes the convolution of the rows of the two-dimensional sigr
Pmn_1 with the one-dimensional filteG,,_1 and the columns of the signal with the one:
dimensional filteiD, and similarly for the other expressions. The fileis the Dirac filter
with impulse response 1 at 0 and 0 everywhere else.

7. RESULTS

We tested the solution strategy preliminary on an Euler test suite. Here we presen
results for atraveling isentropic vortex and transonic flow past a cylinder. The first proble
used to show the effectiveness of high-order methods in smooth flows. The second exe
shows the effectiveness of the combination of detection algorithm and artificial viscos
In the experiments we use a sixth-order SHOEC scheme in the interior of the flow anc
appropriate third-order one-sided stencils at nonperiodic boundaries. Interpolation ir
overlap of composite grids is fourth-order Lagrangian.

7.1. A traveling isentropic vortex.We simulate the Euler equations on a square twi
dimensional domaiigx, y) € (0, 10) x (0, 10) with the initial conditions

1 T
lTOO = 1’ u001 ooy T 4 b
[ ey s 1]
perturbed by

2
€ o1z & ja-r? v-D (€ 4.,
Su,8v,8T] = |—— e r)/2’ el r)/2’_ o1-13/2 .
[ n ot [ 2 2n 2y 27

Here,T = p/p, (X, ¥) = (X — ¢, y — ¢), andr? = X? 4 y2. We require the flow to be isen-
tropic, sopp~" =const=1.
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FIG. 3. Cutthrough density plot at="5 for T =100: (a)n = 80; (b)n=40.

The resulting state is given by

[, pu, pv, p]
_ _ (1-r2)\ /(=D _ (1-r%)/2 (1-13)/25%\ v
= (1 Cye ) ,p(Uoo C,€e Y),p(voo—i-Ce )?),0 .

This state represents a vortex that is centere@,af). The exact solution of the Euler
equations with these initial conditions is a vortex of the same width and strength travel
with the constant spee@i., vs). The solution is computed on a square n grid with
periodic boundary conditions in bott and y-directions. The constants; andC, are
chosen a€; = 2.5/ andC, = C2/7, andc = 5. We consider a diagonally traveling vortex
(Uso = v = 1). We compute the solution for the diagonally traveling vortex with the sixth
order SHOEC scheme at= 100 (10 periods), and observe the decay in the quality of th
solution. The results are shown in Fig. 3. The dotted lines in the graphs show the initial
exact solutions. For boti= 80 andn =40 the solutions are very accurate, even after lon
time integration. We compare our results to the results obtained by Shu [37] for four differ:
numerical methods in Fig. 4: a second-order TVD scheme (MUSCLE with the min—-m
limiter [42]); a third-order ENO scheme [35]; a third-order discontinuous Galerkin methc
[10]; and a fifth-order weighted ENO scheme [18].

The sixth-order SHOEC scheme performs as well as the third-order discontinu
Galerkin method (DG-3) and better than the fifth-order weighted ENO scheme (WEN
5), also forn = 40. Clearly, the second-order TVD scheme and third-order ENO scher
result in poorer solutions. High-order accurate methods require a much lower grid den
to obtain the same solution quality. In [15] we investigated the convergence of the SHO
method using this test problem, which showed the expected order of accuracy of six.

7.2. Flow past a cylinder. The simulation of flow past a cylinder has been used exter
sively as a test problem for numerical schemes in two dimensions for both inviscid &
viscous compressible flows. The simplicity of the geometry is deceptive; the flows are
no means simple to compute. The behavior of the inviscid flow depends on the free str
Mach number N,. For low Mach numbers, the flow is steady and symmetric about tt
horizontal and the vertical. The flow is accelerated over the cylinder and joins smoot
at the rear. As M, increases, the flow eventually develops a supersonic region around
top and bottom of the cylinder. The critical Mach numbey, lélt which this occurs first is
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b  ENO-3, cut at x=5, usv=1, t=100

a TVD-2, cut at x=5, umvs1, t=«100

f

C 0G-3, cutat x5, umysi, tai00 d WENO-5, cut at x=5, umyw1, t=100

0a 1 t 1 s 1 03 n i 1
. 2 4 L] L] " L] 2 4 L] L3 0

FIG. 4. Results experiments Shu foe= 80 andT = 100: (a) second-order TVD scheme; (b) third-order ENO
(c) third-order discontinuous Galerkin; (d) fifth-order WENO.

approximately My = 0.4. Radial shock waves are formed on the lee side of the supersc
region. Because of the pressure gain over the shock, the flow separates at the lee sic
circulation bubbles are formed in the wake (Fig. 5), with nearly constant pressure.
separation points are denoted By

The initial condition we use is derived from the velocity field of an incompressik
potential flow past a circular cylinder with radi&s given by

2 (V=% 5, 2xy
0C+y3? (2 +y?)?]

[uv]=[1+R

The expressions for the remaining variabjesand E are found by requiring constant

FIG. 5. Super critical (M, > 0.4) flow with stagnation point§s.
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entropy in the flow domain so thgip~" = C;, constant total enthalpy which requires
(E 4 p)/p = C,, and the uniform far field

(7.1)

_ 1 1 1
Uy = {1, 1,0, ]

7—_1’__ .
yy—DHMZ 2

The far field corresponds to the velocity field foxf + y?) — oo) with Mach numbeiM ..
We get

1/(y-1)

—1)(Cy— 22402

p=<<y )(C2 — L +v>)> R
1491

We took M, = 0.50, resulting in a maximum Mach number at steady state of approximate
Mmax= 1.6, leading to the formation of two (relatively weak) shocks. We again remal
that the proposed method is not designed for strong shock problems and high Mach r
ber flows. The purpose of this experiment is to show that the proposed tools (detect
adaptation, and efficient artificial viscosity) can handle transonic flow problems well.

Because composite grids are not necessarily needed in this test we can compare comj
grid results to single grid results. The composite grids used were formed by a circt
component grid around the cylinder with outer radius 15 and 32« 64 grid points, and a
Cartesian background grid covering the squaré0, 40) x (—40, 40) with 200x 200 grid
points. The single circular grid has an outer radius €f40 and 32« 120 grid points. The
results were identical.

In Fig. 6 the evolution of the Mach contours are displayed for the first 1600 time ste|
It clearly shows the formation of the lee shocks. At approximately 1700 time steps |
detection algorithm reports the shock which leads to refinement in the shock regions. In
experiment, the buffer zone is equal to 4 and the whole lee side of the cylinder is regridc

The shocks are nearly stationary; they form at@unting from the rear stagnation point
and travel upstream as the back pressure builds up to a final position at approximately
We added second-order artificial viscosity given by 5.4 in the vicinity of the shock on the fi
grid. We added it in the circumferential direction only because the shock is nearly aligr
with the radial grid lines. Its effectiveness is illustrated in Fig. 7. Figures 7a and c sh
contours close to the shock on the upper part of the cylinder at 1900 and 2300 time st
respectively, when the SHOEC scheme is applied without artificial viscosity. Figures 7b :
d show the solutions at the same time when artificial viscosity is added after time step 1
We obtain an approximate one-point shock which is maintained at long time integrat
(Fig. 8). We remark that the number of contour lines is an artifact of the visualization pac
age. At convergence the correct maximum Mach number is observed. The shock resolt
compares well to the (mostly upwind) methods reported in the GAMM workshop.

Two circulation bubbles are created in the wake. The back pressure pushes the stagn
points upstream as conjectured. A close look at the circulation bubbles is provided by Fic

Pandolfi and Larocca [28] reported that in their numerical simulations for the symme
of the flow eventually breaks down after long time integration. The same behaviour v
observed in experiments run at the GAMM workshop [13] held in Rocquencourt. We c
not observe this behaviour which is likely due to the high order of the SHOEC method &
the small amount of artificial viscosity introduced.

In Table | we show profiling data representative of all simulations run on a Dec Alpt
The Runge—Kutta column displays the time to compute the flux derivatives in symmetri:
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a 1900 time steps ~ no art. visc. b 1900 time steps - art. visc.

— —

C 2300 time steps — no art. visc. d 2300 time steps - art. visc.

K;:::

FIG. 7. Mach contours: (a} (c), no artificial viscosity; (b} (d), artificial viscosity. added
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1.5
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FIG. 8. Mach contour on cylinder (dotted line) and at 1 grid point distance from the cylinder (dashed lin
after 1800 and 6000 time steps.
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FIG. 9. \elocity field in the wake.

split form. The computations of the flux vectafsndg, entropy variables), and Jacobians
f,, andg,, are timed separately. The regridding procedure, which includes detection, e
control, and construction and initialization of the finer grids, takes a mere 2%. The ove
overhead due to the interpolation is around 1% of the total CPU time. We remark the
our experiments local grid adaptation reduced the computational time by a factor of :
average. Also, a factor of 2.5 was gained in computational efficiency by increasing the c
of accuracy of the method from 2 to 4 on uniform grids. These studies were performe
subsonic flow with a source term which allowed us to derive an exact solution and accur:
estimate errors.

8. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we proposed a simple and efficient solution strategy for solving fluid flc
governed by the compressible Euler equations. The general solution framework is for
by a stable and central finite difference method of high order of accuracy and impleme
on composite adaptive grids. This combination is effective for solving smooth flows
complicated domains. To handle weak to moderate shocks two new tools were constru
a fast and accurate wavelet-based detection algorithm and an effective and cheap art
viscosity. Local grid adaptation was implemented to increase resolution where requ
while keeping the overall grid density low. The high order of accuracy of the SHOI
scheme combined with the local grid adaptation approach leads to increased effici
because coarser grids can be used in smooth regions. A particular example in the
test suite showed a factor of six improvement in computational time when using a fou
order method on a two-dimensional adaptive grid, compared to a second-order methc
a uniform grid. Just adapting the grid locally gave a factor of 2 improvement for the hit
order method. These gains will be larger in three-dimensional applications.

The overhead of the composite adaptive grid method which includes the overlap inte
lation, the detection, and the construction and initialization of the finer grids, was neglig
compared to the computational kernel.

The grids were refined in the shock regions to retain accuracy because the accur:
discontinuities is at most first order, independently of the numerical method used. Sput
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oscillations generated by the high-order central schemes were suppressed with a
effective scalar artificial viscosity. The artificial viscosity is only added to the scheme
the finer grid(s) in the vicinity of the shock. Atrtificial viscosity was not required outsid
shock regions because of the inherent stability of the finite difference method. The visco
added is smaller than traditionally chosen viscosities and leads to very sharp (approxime
one-point) shock resolutions in both one and two dimensions.

The detection algorithm locates shocks, regions of sharp gradients, and spurious 0s
tions. Intwo dimensions it also determines the orientation of shocks. If a shock is sufficier
aligned with the grid this information can be used to perform grid refinement only in tl
direction normal to the shock. The detection algorithm is fast with @) computations
needed, whereis the number of grid points. No a priori knowledge of the shock location i
needed and the resulting method is therefore shock capturing. The algorithm is indepen
of the numerical method and can therefore be used in other solution packages.

This paper is the first stepping stone in the realization of the proposed solution strat
We feel that the results warrant future research. The error estimation procedure is sti
be implemented into the code and is nontrivial for high-order methods. In smooth regi
and for short time steps the errors are likely to behave in a nonlinear fashion similal
the solution. We could, therefore, postulate a nonlinear estimate by translating the stab
estimates satisfied by the solution. Tests should be run to compare the linear method ag
the nonlinear approach.

The detected shock orientation could be used to restrict local grid refinement to
direction normal to the shock if the shock and the grid are sufficiently aligned. The f:
composite grid generator XCOG could be incorporated into the code so that compor
grids can be aligned with shocks or other phenomena at runtime.

APPENDIX A: SYMMETRIZATION

Forh(S) =e¥@tr),

w:F E+71p —pu —pv p
and
ap  apu apv So(UW?+v) — ~4p
. 1 apu’—p  apuv u(50Uu?+v?) — bp)
o apv? — p v(5p(U”+v%) — bp)
—yi_l%z — bp(U? +v?) + & p (U2 + v?)?
where
p" = xe¥ ) = x(pp V), p=x () wd) VT, (A

with x = —K/B. The variablep* satisfies an equation similar to the equation of state (2.2

-1 1 w?
p*:(y )(wl__g)
o 2 w3
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Its computation through (A.1) is cheapestdoe 1 — 2y which is what we use in our simu-
lations. The constants b, andcarea=(1—«a — y)/a,b=y/(y —1),andc=(1—2y)/
(y —1). The flux vectors are

p 3 . Waws w2 —a T
fw) = —|-w2 —+ ——|wi+——=p ,
p* Wy W4 4 -1

p wawz W 3 y—«a T
g(w)——*[— 3 =2 4 p’ —(w1+ D*ﬂ ;
p 4 W4 4 -1

The upper triangular part of the symmetric matfigw),, expressed in the variabless
given by
f=—
p*
apu apu?—p apuv u(5pu?+ v — bp)
u(@ou? - 3p) v(@pu? — p) —bE +cpt? + §p(U? + v2)u? — Fp(u? + v?)
u(@ov? — p) uv(cp+ §o(u? +v?))
u(be® + cp(u? + v2) + 2 p (U2 + v?)?)
and for§(w),, by

9w = —
p*

apv apuv apv?> — p v(5p(U? +v? — bp)
v(@pu? — p) u(apv®— p) uv(cp+ 5pU? +v?))
v(@pv? —3p) —b% +cp? — 1p(U? +v?) + 3pvP(U2 + v?)

v(be 4 cpU? + v?) + 2p(U? + v?)?)
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